TY - JOUR
T1 - Local geometric properties do not support reorientation in hippocampus-engaged homing pigeons
AU - Sotelo, María Inés
AU - Nardi, Daniele
AU - Payne, Karissa B.
AU - Coppola, Gino V. J.
AU - Muzio, Rubén N.
AU - Bingman, Verner Peter
PY - 2019
Y1 - 2019
N2 - It is generally accepted that the geometry of an environment is a reliable source of information for spatial navigation used by most vertebrate species. However, there is a continuing debate on which geometrical properties of space are the ones that matter for reorientation. In this study, pigeons were trained to find a food reward hidden in 2 opposite corners in a rectangular arena. The animals were then tested in a kite-shaped environment similar to Pearce, Good, Jones, and McGregor (2004). We found that pigeons, unlike rats, were not able to identify the correct corner in the kite arena even though elements clearly preserved the correct long wall-short wall geometric configuration and the local aspect of the trained goal. This behavioral study was followed by a c-Fos, IEG analysis of brain activation that contrasted pigeons exposed to the trained, familiar rectangular environment with pigeons that were exposed to an unfamiliar, trapezoid arena. The hippocampal formation (HF) displayed greater c-Fos expression in the animals exposed to the familiar, training arena, which further supports the conclusion that pigeons do not substantially rely on local geometric features for reorientation.
AB - It is generally accepted that the geometry of an environment is a reliable source of information for spatial navigation used by most vertebrate species. However, there is a continuing debate on which geometrical properties of space are the ones that matter for reorientation. In this study, pigeons were trained to find a food reward hidden in 2 opposite corners in a rectangular arena. The animals were then tested in a kite-shaped environment similar to Pearce, Good, Jones, and McGregor (2004). We found that pigeons, unlike rats, were not able to identify the correct corner in the kite arena even though elements clearly preserved the correct long wall-short wall geometric configuration and the local aspect of the trained goal. This behavioral study was followed by a c-Fos, IEG analysis of brain activation that contrasted pigeons exposed to the trained, familiar rectangular environment with pigeons that were exposed to an unfamiliar, trapezoid arena. The hippocampal formation (HF) displayed greater c-Fos expression in the animals exposed to the familiar, training arena, which further supports the conclusion that pigeons do not substantially rely on local geometric features for reorientation.
UR - https://psycnet.apa.org/record/2019-02643-001
M3 - Article
VL - 133
JO - Behavioral Neuroscience
JF - Behavioral Neuroscience
ER -